Life on Other Planets Doubtful

Life on Other Planets?
We have repeatedly pointed out that finding life on other planets has no bearing on the question of God’s creation of life on Earth. The Bible does not say that this is the only place where God created life.

Astronomers have observed over 3500 planets orbiting stars other than our Sun. Many writers have suggested that life in space is natural and likely because of the number of planets that exist. That assumption has a problem. There are an enormous number of variables that must be precisely controlled to allow life to exist.

Scientists have recently discovered that while it takes 243 days for Venus to rotate once, its atmosphere requires only four days in what is called “superrotation.” How can a planet’s atmosphere rotate 60 times faster than the planet itself? What effect does this have on the conditions at the surface of the planet where life could exist?

Another recent discovery concerns Proxima Centauri b, a planet orbiting in the habitable zone of the closest star to us other than the Sun. The star it orbits, Proxima Centauri, is continuously flaring and driving away any atmosphere that an orbiting planet might have. Astronomers working on the study of this star and the planets around it released a statement saying “any chance for life on Proxima Centauri b may be toast.”

We continue to find that the conditions needed for life on other planets are numerous. Having water is important, but many other factors must be carefully controlled for a planet to support even the most simple forms of life.

God’s creation of the Earth and the conditions that allow life to exist here becomes more and more amazing as we learn more about the cosmos.
–John N. Clayton © 2017
Data from Astronomy magazine, December 2017, pages 12 and 17.

Fire Ant Towers

Fire Ant Towers
Those who live in areas where fire ants are active can tell you about fire ant towers. The ants will encircle a rod, stick, or tree to build a tower that is wide at the base and narrows as it goes up. You can watch this behavior on a video posted here.

Researchers at the Georgia Institute of Technology were interested in how the ants do this without crushing the ants at the bottom. What they found was that the ants form rings around the structure at the center using their sticky feet to cling to each other. The rings are all concentric, but they get smaller as the tower grows. Ants near the bottom only stay there for a short time, backing off to take a break and then climbing up to the top to rejoin the structure to keep the tower standing. These towers are temporary, but they shield the colony from outside forces.

This behavior of fire ants cannot be learned. It is certainly not the product of trial and error but is clearly programmed into the ant’s DNA. Many insect behaviors are characteristic and peculiar to a certain species of insect. These built-in skills strongly suggest that the programming was done by an intelligent Creator to enhance the survival of the insects.

Proverbs 6:6 tells us, “Go to the ant, you sluggard; consider its ways and be wise.” While the passage is about being active in providing for the future and avoiding poverty, the message also comes to us today to see the handiwork of God in even His smallest creatures. Scientists are studying these ants to learn how they work together and build fire ant towers so that science can apply that intelligence to program robots.
–John N. Clayton © 2017

Incredible Color

Incredible Color
Our ability to see the incredible color in the world around us is amazingly complex. We don’t actually see color with our eyes. We see color with our brains.

Most humans have trichromatic vision. Our eyes only detect red, green and blue. If our eyes detect a lot of red and green but not much blue, our brains decide that we are seeing yellow. When our eyes register equal amounts of red, green, and blue, our brain decides that we are seeing gray. If red and blue are present, but not much green, our brain decides we are seeing purple.

Some of us do not have red or green receptors in our eyes, especially people with XY chromosomes (males). We call it color blindness, but in reality, our eyes just don’t see one particular set of wavelengths. Some of us with XX chromosomes (females) may have tetrachromacy which means we see more than the three primary colors.

In the animal world, color is produced by many different techniques. The wings of the Morpho butterfly appear to be blue or violet depending on how the light strikes them. This is due to light-scattering scales that cover the insect’s wings. Dragonfly wings look similar to the Morpho wings, but the dragonfly’s color comes from waxy crystals that cover layers of the pigment melanin. We call the method of color production in these insects “structural color” because it is produced by the structure of the material rather than by pigments. Cameleons also use structural color using nanocrystals in their skin. They can tune the nanocrystals to reflect different colors. In this way, they can match the color of their environment or their mood.

We use color in many different ways such as camouflage, disguising foods to avoid their natural look, and to identify things. Much of the color that we see in the world has no practical value. For the most part, beauty is not a survival attribute. Evolutionary models attempt to explain some of the coloration we see around us, but in many cases, color is not a survival factor. Incredible color may be simply an expression of God’s desire for us to see the beauty and the majesty of His creation.
–John N. Clayton © 2017

Most Sophisticated Visual System

Most Sophisticated Visual System
You might be surprised to know what animal has the most sophisticated visual system. Its eyes have six different types of color receptors compared to three in human eyes, and three focal points while human eyes have only one. This animal can see both ultraviolet and infrared light, which our eyes cannot do. It has six polarization channels in each eye with high polarization sensitivity and hyperspectral imaging. What is the animal with this incredible visual system? It’s the mantis shrimp–a marine crustacean of the order Stomatopoda.

Researchers studying this animal’s eye say that it not only surpasses the sensitivity of our own visual system, but also captures more visual information, uses less power, and takes up less space than the most sophisticated state-of-the-art cameras. Scientists at the University of Illinois have developed a color-polarization camera based on the mantis shrimp’s visual system. The camera can aid in the early detection of cancer.

Mantis shrimps communicate using polarized light which cannot be detected by predators. They polarize the light by sending it across a reflector rather than the conventional method of sending the light through a lens. Researchers are copying this method of the mantis shrimp to develop a single chip, low-power, high-resolution color-polarization camera. The National Science Foundation and the Air Force Office of Scientific Research are sponsoring the project. The mantis-copied camera concept has great potential for a variety of applications.

Romans 1:19-20 tells us we can know there is a God through the things He has made. Again and again, scientists discover design’s like the most sophisticated visual system of the mantis shrimp. These amazing discoveries happen in every discipline of science. It is an exciting time to be alive, as we see more and more examples of God’s creative wisdom and design. Go to Photonics Online for more on this.
–John N. Clayton © 2017

Origin of Life Complexity

Origin of Life Complexity
The origin of life complexity continues to baffle science. There are two competing scientific theories on the origin of life. One is called the “Darwin school of thought” which posits that meteorites brought elements to Earth that led to the formation of compounds which led to RNA and then to DNA. The second theory says that life originated in mineral-rich hydrothermal vents on the ocean floor.

The problem with both of these theories is that they are not explaining the origin of life complexity. They are only explaining some of the compounds that would be necessary to form life. Many scientists question the possibility of either of these theories and whether organic compounds could survive in the conditions of the early Earth. The bigger issue is how you could move from those compounds–no matter how they were formed–to a living cell.

You not only must have the ingredients to make life, but you also need a protected environment in which those compounds can be combined. Life could not begin in a toxic atmosphere or if there were agents on Earth’s surface that would destroy the ingredients. RNA and DNA involve long strands of nucleotides. Scientists in the laboratory can only produce such chains in a carefully controlled environment. The time element involved in producing increasingly complex molecules is also an issue.

When we enter probabilities into this process, the odds of each step happening by chance are very unlikely. Then to put all the steps together in the right order makes the probability of it happening by chance outside the scientific limits of what is possible.

Research into the origin of life complexity strongly points to an intelligent Creator. The more we learn, the more complexity we see. The famous atheist Antony Flew saw the complexity of a living cell, and that was a major factor in his coming to believe in God. His statement of faith was, “You have to go where the evidence leads.” Certainly, this area of study gives evidence of God’s wisdom and creative design. References: The Week, October 20, 2017, page 19, and Newsweek.com.
–John N. Clayton © 2017

Natural Elements of the Periodic Table

Natural Elements of the Periodic Table
One of the things high-school chemistry students have to learn is how to use a periodic table of the elements. As we worked with the chart, I almost always had a student ask me how the natural elements of the periodic table came into existence. Our textbook simply said that the elements were produced by “the event that produced the universe.”

Dr. Timothy C. Beers is the chair of astrophysics in the College of Science at the University of Notre Dame. The Notre Dame Magazine for Autumn 2017 contains an interesting article about his efforts to understand the processes that formed the natural elements of the periodic table. Dr. Beers calls it “Galactic Archaelogy.”

Beers was the first scientist to identify “carbon-enhanced metal-poor stars.” These stars appear to have formed very early in the creation of the universe, and thus they give a window into the past. When the universe was created, only hydrogen and helium were present. Beers and his fellow researchers are working to understand what is called a rapid neutron-capture process. When neutrons bombard the lighter elements, some of those neutrons latch on and create heavier elements. As we watch that process taking place, we see that producing the elements heavier than hydrogen and helium requires a more complex process than anyone could imagine.

The Bible simply says, “In the beginning, God created the heavens (outer space) and the earth (elements that make up our planet).” God doesn’t tell us how He did it, but Genesis 2:3 tells us that God created (did a miraculous event that humans cannot do) and made (did an event that we can do and understand). The team that Dr. Beers leads is trying to understand how God did it.

Understanding how God created the stuff that makes up our bodies is a part of seeing the handiwork of God. Dr. Beers says, “I think human beings want to know the story,” and he says that his work will surely produce a religious response. The design of the natural elements of the periodic table is amazing. Learning how God formed them is a rich source of data about God’s design and creative wisdom.

In Proverbs 8:22-23 wisdom speaks of the creation, “The Lord possessed me in the beginning of His way, before His works of old. I was set up from everlasting, from the beginning, or ever the Earth was.” Knowing how God did the marvelous creation we see around us includes the very large such as the Grand Canyon and the very small such as quarks. Understanding how He made the elements is one of the most astounding evidences of design we can see in the cosmos.
–John N. Clayton © 2017

Cormorants Find Fish in Muddy Waters

Cormorants Find Fish in Muddy Waters
Several years ago a flock of cormorants arrived on the St. Joseph River near our home. The river was close to flood stage. The water was so muddy that you couldn’t see the bottom even if the water had been only an inch deep. Those birds demonstrated that cormorants find fish in muddy waters.

The birds landed in a large tree on an island in the middle of the river. Very soon after they landed, one took off and dove into the river. A minute or so later it came to the surface with a fish in its beak. For the rest of the day, we saw these fishing birds dive and catch fish, sometimes staying under water for a very long time. I wondered how they could do that because sight in the water was non-existent.

In the October/November 2017, issue of National Wildlife (page 8), there is an article explaining how cormorants and other fish-eating birds manage when the water is so loaded with mud that they can’t see. Scientists at the University of Southern Denmark have studied the hearing of the great cormorant. They discovered that this seabird has a specialized sense of hearing tuned to a very narrow frequency range. The frequency is the same as the sound produced by herring and sculpin fish as they swim in the water. Those fish are the primary prey of the cormorant and sculpin live on the bottom of water bodies where it is dark, and the water is often dirty.

There are over 800 species of birds that find their food underwater. Since these cormorants find fish in muddy waters, the scientists on this project predict that other aquatic birds also use specialized hearing to catch fish. We see this as another design that God gave these creatures for survival.
–John N. Clayton © 2017

Titan Studies Verify Earth’s Uniqueness

Titan Studies Verify Earth's Uniqueness
Yesterday we wrote about the end of the Cassini mission. We mentioned that an early highlight of that mission was landing the Huygens probe on Titan in January of 2005. Titan is a moon of Saturn and the largest moon in our solar system. Scientists were very interested in studying Titan thinking they might find evidence of life. Instead, the Titan studies verify Earth’s uniqueness.

It took seven years for the Huygens lander to make the 2.2-billion-mile (3.5 billion km) journey to Saturn on board the Cassini spacecraft. Cassini arrived at Saturn in June 2004, but it was not until Christmas Day that the Titan probe separated from the Cassini spaceship. On January 14, the probe entered the upper atmosphere of Titan at 12,400 miles (almost 20,000 km) per hour. After opening three parachutes, Huygens eventually completed a 150-minute descent to land on the surface of Titan.

As Huygens descended to the surface, it made measurements of all kinds and turned on a spotlight to photograph its soft landing. It then sent pictures and data from the surface of Titan to the Cassini spacecraft for about an hour-and-a-half. The Cassini spacecraft relayed the data and pictures to Earth. This expedition was an incredible success and told us much about conditions in another area of the solar system.

Some experts predicted that they would find life, or at least the precursors of life, on Titan. Spectrographic analysis of the atmosphere had shown a huge amount of nitrogen and some methane (natural gas) in the atmosphere. The presence of methane was of special interest to scientists because methane, with a carbon atom and four hydrogen atoms, is the building block of more complicated organic molecules. Some biochemists predicted massive numbers of complex organic molecules in oceans of hydrocarbons on Titan–perhaps even some basic life-forms.

As the Huygens probe sent back pictures from Titan, scientists were amazed to see carved river channels, old shorelines, and clouds. With a temperature of minus 300 degrees Fahrenheit (-184 C) these obviously could not be water-carved channels. As Huygens landed, it broke through a crusty surface and sank several inches into the ground. The chemical studies of the spongy surface showed that it was not rock, but frozen gaseous material. Titan’s atmosphere could not sustain life. The clouds turned out to be methane,and scientists could find no oxygen or oxygen compounds on Titan. Titan has a spongy surface saturated with organic compounds. The density of Titan tells us that deep down under all of this organic ice there must be very dense rock.

It is becoming apparent that the other planets in our solar system have very little in common with Earth. Titan studies verify Earth’s uniqueness once again. Jonathon Lunine, a planetary scientist who worked on this project, described the findings in this way, “This is a planetary scene like no other, vaguely disturbing and nightmarish to me and certainly not Mars or Venus.”

Our point is that all the discoveries science has made about the solar system have shown how special and unique the Earth is. It is wonderful that humans can build a machine to probe such strange and exotic places. As we learn more about the universe, we see the truthfulness of the Psalmist’s words, “The heavens declare the glory of God; the skies proclaim the work of his hands. Day after day they pour forth speech; night after night they reveal knowledge” (Psalms 19:1-2, NIV).
–John N. Clayton © 2017

July/August 2005

Cassini Exceeded Expectations

Cassini Exceeded Expectations
On the morning of September 15, 2017, Cassini ended its life in fiery destruction. Cassini was a space probe orbiting and studying Saturn, and by all measures, Cassini exceeded expectations.

NASA, the European Space Agency, and the Italian Space Agency worked together on the Cassini-Huygens space exploration project. The mission was to study Saturn along with its moons and rings. NASA launched the spacecraft in 1997, and it arrived near Saturn and went into orbit around that planet in 2004.

The Huygens (pronounced hoy-guns) lander module, provided by the ESA, separated from the Cassini probe and landed on Saturn’s largest moon, Titan, in 2005. The parachute landing was successful, and the probe sent out data for about 90 minutes. In that brief time, scientists learned much about the surface of that distant moon. Viewed from Titan’s surface, the Sun appeared about the size and brightness of a car headlight 150 meters away. The Huygens probe took pictures and told us that Titan’s surface is dotted with rivers, lakes, and oceans made of methane and ethane. It also has dunes up to 300 feet (91 meters) tall.

Meanwhile, the Cassini probe continued to orbit Saturn and send back amazing and beautiful pictures of its rings and moons for 13 years. Cassini helped us to learn more about the moons of Saturn. The planet has at least 53 moons and possibly eight more. We learned that the moon Enceladus is covered with a liquid water ocean with a surface layer of ice 19 to 25 miles (30 to 40 km) thick. Geysers of water erupt from cracks in the ice. The rings of Saturn are a constantly changing collection of ice particles and small rocks. Saturn has hurricane-like storms at both poles and a hexagon-shaped jet stream at the north pole. How long is a day on Saturn? That’s hard to determine because it is a gas planet and not all parts of it move at the same speed. Scientists estimate a little more than 10 hours.

Cassini exceeded expectations by surviving seven years of travel to Saturn plus 13 years orbiting the planet. As it ran out of fuel, scientists sent it hurtling into Saturn’s atmosphere to burn up so it could not contaminate any of Saturn’s moons by crashing into them.

We are fascinated by the Cassini photos and scientists will continue to study them for years. The picture we posted shows a Cassini view of Saturn and its rings with a bright spot visible below the rings. That spot is the planet where we live. As we look at the hostile environment of space and the other planets, we realize how incredible Earth is. God has given us a place with everything we need for life. You might say that compared to any other place in the universe, Earth exceeds expectations.
–Roland Earnst © 2017

Autumn Equinox and Season Design

Autumn Equinox and Season Design
We have just passed the autumn equinox and what we call “the first day of fall.” It will be late December before fall officially ends at the winter solstice. On the first day of fall here in Michigan, it was unseasonably hot, and people were griping about “where is the cool fall weather we are supposed to have?” Long before the first day of winter on December 20-21, we will have snow. Is there something wrong with the seasons, or is the trouble with our understanding?

“Equinox” suggests that the length of the day is equal to the length of the night. The Sun is overhead at the equator, and from now until December 20 it will be directly overhead at progressively greater southern latitudes until it reaches just past 23 degrees south latitude. Here in the north, the Sun’s elevation above the horizon will get progressively lower, meaning that less and less of the Sun’s energy will strike the Earth’s surface so the weather will get cooler.

The problem with this simple picture is that there is a lag in the seasons. During the summer months in the Northern Hemisphere the lakes and oceans warm from the sunshine. Water has a high specific heat, so that heat is stored and is released slowly. That means we stay warm longer than expected in the fall. In the Southern Hemisphere the picture is complicated by the fact that the Earth is closer to the Sun during their summertime, so the radiation is more intense. That might be a problem except that the Southern Hemisphere has more water than the Northern Hemisphere because oceans cover more of the southern Earth’s surface. With that greater storage and absorption capacity moderates the temperatures in the Southern Hemisphere.

The autumn equinox reminds us of the incredibly well-designed system of the Earth. It is easy to over-simplify the seasons and the equinoxes and solstices, but the system functions remarkably well. Without that careful design, the weather picture would be far more unstable than it is. Proverbs 8:22-31 speaks of wisdom’s involvement in all of the creation. We are just now beginning to understand how the system works and how our use of Earth’s resources affect the system.
–John N. Clayton © 2017