Natural Elements of the Periodic Table

Natural Elements of the Periodic Table
One of the things high-school chemistry students have to learn is how to use a periodic table of the elements. As we worked with the chart, I almost always had a student ask me how the natural elements of the periodic table came into existence. Our textbook simply said that the elements were produced by “the event that produced the universe.”

Dr. Timothy C. Beers is the chair of astrophysics in the College of Science at the University of Notre Dame. The Notre Dame Magazine for Autumn 2017 contains an interesting article about his efforts to understand the processes that formed the natural elements of the periodic table. Dr. Beers calls it “Galactic Archaelogy.”

Beers was the first scientist to identify “carbon-enhanced metal-poor stars.” These stars appear to have formed very early in the creation of the universe, and thus they give a window into the past. When the universe was created, only hydrogen and helium were present. Beers and his fellow researchers are working to understand what is called a rapid neutron-capture process. When neutrons bombard the lighter elements, some of those neutrons latch on and create heavier elements. As we watch that process taking place, we see that producing the elements heavier than hydrogen and helium requires a more complex process than anyone could imagine.

The Bible simply says, “In the beginning, God created the heavens (outer space) and the earth (elements that make up our planet).” God doesn’t tell us how He did it, but Genesis 2:3 tells us that God created (did a miraculous event that humans cannot do) and made (did an event that we can do and understand). The team that Dr. Beers leads is trying to understand how God did it.

Understanding how God created the stuff that makes up our bodies is a part of seeing the handiwork of God. Dr. Beers says, “I think human beings want to know the story,” and he says that his work will surely produce a religious response. The design of the natural elements of the periodic table is amazing. Learning how God formed them is a rich source of data about God’s design and creative wisdom.

In Proverbs 8:22-23 wisdom speaks of the creation, “The Lord possessed me in the beginning of His way, before His works of old. I was set up from everlasting, from the beginning, or ever the Earth was.” Knowing how God did the marvelous creation we see around us includes the very large such as the Grand Canyon and the very small such as quarks. Understanding how He made the elements is one of the most astounding evidences of design we can see in the cosmos.
–John N. Clayton © 2017

Cormorants Find Fish in Muddy Waters

Cormorants Find Fish in Muddy Waters
Several years ago a flock of cormorants arrived on the St. Joseph River near our home. The river was close to flood stage. The water was so muddy that you couldn’t see the bottom even if the water had been only an inch deep. Those birds demonstrated that cormorants find fish in muddy waters.

The birds landed in a large tree on an island in the middle of the river. Very soon after they landed, one took off and dove into the river. A minute or so later it came to the surface with a fish in its beak. For the rest of the day, we saw these fishing birds dive and catch fish, sometimes staying under water for a very long time. I wondered how they could do that because sight in the water was non-existent.

In the October/November 2017, issue of National Wildlife (page 8), there is an article explaining how cormorants and other fish-eating birds manage when the water is so loaded with mud that they can’t see. Scientists at the University of Southern Denmark have studied the hearing of the great cormorant. They discovered that this seabird has a specialized sense of hearing tuned to a very narrow frequency range. The frequency is the same as the sound produced by herring and sculpin fish as they swim in the water. Those fish are the primary prey of the cormorant and sculpin live on the bottom of water bodies where it is dark, and the water is often dirty.

There are over 800 species of birds that find their food underwater. Since these cormorants find fish in muddy waters, the scientists on this project predict that other aquatic birds also use specialized hearing to catch fish. We see this as another design that God gave these creatures for survival.
–John N. Clayton © 2017

Titan Studies Verify Earth’s Uniqueness

Titan Studies Verify Earth's Uniqueness
Yesterday we wrote about the end of the Cassini mission. We mentioned that an early highlight of that mission was landing the Huygens probe on Titan in January of 2005. Titan is a moon of Saturn and the largest moon in our solar system. Scientists were very interested in studying Titan thinking they might find evidence of life. Instead, the Titan studies verify Earth’s uniqueness.

It took seven years for the Huygens lander to make the 2.2-billion-mile (3.5 billion km) journey to Saturn on board the Cassini spacecraft. Cassini arrived at Saturn in June 2004, but it was not until Christmas Day that the Titan probe separated from the Cassini spaceship. On January 14, the probe entered the upper atmosphere of Titan at 12,400 miles (almost 20,000 km) per hour. After opening three parachutes, Huygens eventually completed a 150-minute descent to land on the surface of Titan.

As Huygens descended to the surface, it made measurements of all kinds and turned on a spotlight to photograph its soft landing. It then sent pictures and data from the surface of Titan to the Cassini spacecraft for about an hour-and-a-half. The Cassini spacecraft relayed the data and pictures to Earth. This expedition was an incredible success and told us much about conditions in another area of the solar system.

Some experts predicted that they would find life, or at least the precursors of life, on Titan. Spectrographic analysis of the atmosphere had shown a huge amount of nitrogen and some methane (natural gas) in the atmosphere. The presence of methane was of special interest to scientists because methane, with a carbon atom and four hydrogen atoms, is the building block of more complicated organic molecules. Some biochemists predicted massive numbers of complex organic molecules in oceans of hydrocarbons on Titan–perhaps even some basic life-forms.

As the Huygens probe sent back pictures from Titan, scientists were amazed to see carved river channels, old shorelines, and clouds. With a temperature of minus 300 degrees Fahrenheit (-184 C) these obviously could not be water-carved channels. As Huygens landed, it broke through a crusty surface and sank several inches into the ground. The chemical studies of the spongy surface showed that it was not rock, but frozen gaseous material. Titan’s atmosphere could not sustain life. The clouds turned out to be methane,and scientists could find no oxygen or oxygen compounds on Titan. Titan has a spongy surface saturated with organic compounds. The density of Titan tells us that deep down under all of this organic ice there must be very dense rock.

It is becoming apparent that the other planets in our solar system have very little in common with Earth. Titan studies verify Earth’s uniqueness once again. Jonathon Lunine, a planetary scientist who worked on this project, described the findings in this way, “This is a planetary scene like no other, vaguely disturbing and nightmarish to me and certainly not Mars or Venus.”

Our point is that all the discoveries science has made about the solar system have shown how special and unique the Earth is. It is wonderful that humans can build a machine to probe such strange and exotic places. As we learn more about the universe, we see the truthfulness of the Psalmist’s words, “The heavens declare the glory of God; the skies proclaim the work of his hands. Day after day they pour forth speech; night after night they reveal knowledge” (Psalms 19:1-2, NIV).
–John N. Clayton © 2017

July/August 2005

Cassini Exceeded Expectations

Cassini Exceeded Expectations
On the morning of September 15, 2017, Cassini ended its life in fiery destruction. Cassini was a space probe orbiting and studying Saturn, and by all measures, Cassini exceeded expectations.

NASA, the European Space Agency, and the Italian Space Agency worked together on the Cassini-Huygens space exploration project. The mission was to study Saturn along with its moons and rings. NASA launched the spacecraft in 1997, and it arrived near Saturn and went into orbit around that planet in 2004.

The Huygens (pronounced hoy-guns) lander module, provided by the ESA, separated from the Cassini probe and landed on Saturn’s largest moon, Titan, in 2005. The parachute landing was successful, and the probe sent out data for about 90 minutes. In that brief time, scientists learned much about the surface of that distant moon. Viewed from Titan’s surface, the Sun appeared about the size and brightness of a car headlight 150 meters away. The Huygens probe took pictures and told us that Titan’s surface is dotted with rivers, lakes, and oceans made of methane and ethane. It also has dunes up to 300 feet (91 meters) tall.

Meanwhile, the Cassini probe continued to orbit Saturn and send back amazing and beautiful pictures of its rings and moons for 13 years. Cassini helped us to learn more about the moons of Saturn. The planet has at least 53 moons and possibly eight more. We learned that the moon Enceladus is covered with a liquid water ocean with a surface layer of ice 19 to 25 miles (30 to 40 km) thick. Geysers of water erupt from cracks in the ice. The rings of Saturn are a constantly changing collection of ice particles and small rocks. Saturn has hurricane-like storms at both poles and a hexagon-shaped jet stream at the north pole. How long is a day on Saturn? That’s hard to determine because it is a gas planet and not all parts of it move at the same speed. Scientists estimate a little more than 10 hours.

Cassini exceeded expectations by surviving seven years of travel to Saturn plus 13 years orbiting the planet. As it ran out of fuel, scientists sent it hurtling into Saturn’s atmosphere to burn up so it could not contaminate any of Saturn’s moons by crashing into them.

We are fascinated by the Cassini photos and scientists will continue to study them for years. The picture we posted shows a Cassini view of Saturn and its rings with a bright spot visible below the rings. That spot is the planet where we live. As we look at the hostile environment of space and the other planets, we realize how incredible Earth is. God has given us a place with everything we need for life. You might say that compared to any other place in the universe, Earth exceeds expectations.
–Roland Earnst © 2017

Autumn Equinox and Season Design

Autumn Equinox and Season Design
We have just passed the autumn equinox and what we call “the first day of fall.” It will be late December before fall officially ends at the winter solstice. On the first day of fall here in Michigan, it was unseasonably hot, and people were griping about “where is the cool fall weather we are supposed to have?” Long before the first day of winter on December 20-21, we will have snow. Is there something wrong with the seasons, or is the trouble with our understanding?

“Equinox” suggests that the length of the day is equal to the length of the night. The Sun is overhead at the equator, and from now until December 20 it will be directly overhead at progressively greater southern latitudes until it reaches just past 23 degrees south latitude. Here in the north, the Sun’s elevation above the horizon will get progressively lower, meaning that less and less of the Sun’s energy will strike the Earth’s surface so the weather will get cooler.

The problem with this simple picture is that there is a lag in the seasons. During the summer months in the Northern Hemisphere the lakes and oceans warm from the sunshine. Water has a high specific heat, so that heat is stored and is released slowly. That means we stay warm longer than expected in the fall. In the Southern Hemisphere the picture is complicated by the fact that the Earth is closer to the Sun during their summertime, so the radiation is more intense. That might be a problem except that the Southern Hemisphere has more water than the Northern Hemisphere because oceans cover more of the southern Earth’s surface. With that greater storage and absorption capacity moderates the temperatures in the Southern Hemisphere.

The autumn equinox reminds us of the incredibly well-designed system of the Earth. It is easy to over-simplify the seasons and the equinoxes and solstices, but the system functions remarkably well. Without that careful design, the weather picture would be far more unstable than it is. Proverbs 8:22-31 speaks of wisdom’s involvement in all of the creation. We are just now beginning to understand how the system works and how our use of Earth’s resources affect the system.
–John N. Clayton © 2017

Great American Eclipse “Engineered”

The Great American Eclipse
One month ago today a total solar eclipse crossed the United States. The so-called Great American Eclipse had many interesting things associated with it.

We have pointed out in previous discussions that people have attached all kinds of erroneous connections to eclipses. Some people have suggested that the eclipse predicts the doom of kings and in recent weeks the demise of Donald Trump. We have seen religious prognostications of all kinds attached to the eclipse including the second coming of Christ. There are those who have denigrated biblical events such as the darkness at the time Christ died, saying it was just an eclipse. (No eclipse can last for three hours.) None of these claims and predictions have any value.

One message that should stand out from the eclipse is the precision that God has built into the creation of the cosmos. How can astronomers predict when eclipses will occur including the exact time for a given location? This is quite simple if you understand the design of the creation. Astronomers have a grid in the sky that is an extension of the latitude/longitude system on the surface of the Earth. All objects in space, including the Sun and the Moon, can be plotted on this grid system. This allows scientists to plot the movement of the Moon and the shadow the Moon casts on Earth. (Remember that a solar eclipse is the Moon’s shadow on the Earth.)

Many of us earth science teachers use the Earth Science Curriculum Project. It has a lab where students plot an eclipse and predict what kind of eclipse will occur. They can predict when it will start, how much of the Sun will be covered, and when it will end. One of my students commenting after doing the lab, “Wow, what engineer thought up this system?” Another student responded “No engineer did it. God did it!” The first student responded, “Well God is a pretty cool engineer!”

We have pointed out that one of the problems people have with faith is that they attempt to explain everything as mysticism and magic. When it becomes obvious that planning and design are part of the system, that understanding erodes their faith in God. A good magician can mystify us, but still, he is using methods we can understand if we learn how he did it.

The Great American Eclipse spoke well about how precisely and carefully God has designed the planetary system in which we live. The eclipse is one more witness to the statement that, “The heavens declare the glory of God; the skies proclaim the work of his hands” (Psalms 19:1).
–John N. Clayton

It’s Good to be Blue

Blue Begonias
It’s a plant that uses quantum mechanics to make maximum use of minimum light, and in doing so, it displays blue leaves. The explanation of why blue begonias are blue is another demonstration of the incredible design built into all living things.

The tropical begonia (Begonia pavonina) that grows in Malaysia has leaves that are iridescent blue. The blue does not come from pigmentation, but rather from structural color, a technique that gives beautiful color to some birds, Butterflies, and beetles. In the leaves of all kinds of plants there are cellular capsules called chloroplasts, and inside those structures is a green substance known as chlorophyll. The chloroplasts are the organic machines that take energy from sunlight and chemicals from the soil to make organic energy that allows the plant grow.

Sunlight is a mixture of light at various energy levels, but green is the highest energy of sunlight reaching the surface of the Earth. Since the chlorophyll pigment reflects green light, the plant is protected from being damaged by the high-energy sunlight. We see the reflected green light, so the leaves look green.

Blue begonias live on the floor of dense rain forests where the forest canopy restricts the light. Inside the chloroplasts of these begonias, there are nano-structures called thylakoids where the energy conversion takes place. Other plants have thylakoids, but they are arranged differently in the begonia. Scientists using an electron microscope discovered that the thylakoids are aligned in a way that they act like crystals. In other plants, they are haphazard in their arrangement. Light bounces around within the thylakoids causing interference at certain wavelengths and reflecting the iridescent blue. The light is slowed down in this process so the plant can use more of the high-energy green and red light while reflecting the blue. These plants are using principles of quantum mechanics which scientists only began to learn about in the twentieth century.

The result is that the blue begonias get the nutrition they need to survive in a location with little sunlight, and we see the leaves as a beautiful blue. One science website described the alignment of the thylakoids in this way: “…they have an amazingly regular structure, which is obviously planned.” Here is the way another science website described the unique way these begonias efficiently use the limited sunshine they receive: “It seems selective evolution led the plants to engineer a nanoscale light-trapping structure, the likes we’ve only seen in miniature lasers and other photonic structures made by humans…”

We believe that planning requires a planner and engineering requires an engineer. As scientists study even the simplest forms of life, they find more and more evidence that God is ingenious in all He creates.
–John N. Clayton and Roland Earnst © 2017

Saharan Silver Ants

Saharan Silver Ants
The survival of living things in extreme conditions is always fascinating. There are places on Earth, such as the Sahara Desert, where the temperature on the ground can soar to 120 degrees Fahrenheit. Even in that extreme heat there are living things functioning very well in conditions that would be lethal to most forms of life.

Extreme survival is a way of life for the Saharan silver ants (Cataglyphis bombycina). The predators of these ants are desert lizards that retreat into their burrows in the heat of the day. Some of the ants keep watch to let the others know when the lizards are gone. Then the ant colony makes its food-search expedition. They come out into the full Sun and intense heat to scavenge animal carcasses. The picture shows them devouring an engorged camel tick.

The question is, “How do they survive the heat?” They have longer legs than most ants, and that keeps their bodies farther from the hot sand. They also travel across the sand at high speed (2.3 feet or 0.7 meters per second) using only four of their six legs to keep fewer feet on the ground. Also, their bodies produce heat-shock proteins that help their cells cope with the stress of the high temperature. Many animals produce heat-shock proteins, but not until they are exposed to extreme heat. The Saharan silver ants are programmed to produce those proteins before heat exposure to prepare them for what’s ahead.

Even with those adaptations, they are still exposed to the direct rays of the Sun. Scientists used electron microscopes to find the secret of the Saharan silver ant’s survival. The ants are covered with microscopic hairs that are not round or oval in cross-section like most hairs. They have a triangle shape to act as prisms. This shape reflects both the visible and infrared (heat) energy from the Sun away from their bodies. Because of these tiny prisms, the ants display a metallic shine. They look like metallic beads rolling quickly over the desert sand. No other desert creature has this form of reflection. Saharan silver ants are among the most heat-resistant creatures in the world.

Like many things in nature, engineers are looking into how we can imitate the prism method of these ants to protect humans from the dangers of extreme heat. Designing something that can reflect the heat this efficiently requires a deep understanding of optics and the nature of light and heat energy. The wisdom of the Creator shines brightly in the reflected light coming from the Saharan silver ants.
–John N. Clayton and Roland Earnst © 2017

Hurricanes and God’s Design

Hurricanes and God's Design
Our hearts go out to everyone who has been affected by the recent storms in Texas and Louisiana. Our family has members who were flooded and have sustained a terrible loss. The total damage to innocent humans is so massive it is hard to comprehend. Please do not interpret this discussion as being callous, unfeeling, or minimizing the loss that so many have suffered. However, we need to consider the cause of hurricanes and God’s design for life on Earth.

When something like this happens, we receive communications either blaming God or wanting to know why God has allowed it to happen. We would not pretend to have all the answers to the questions that a disaster like this raises. However, this is not a vindictive act of God or retaliation for some human sin. It is a natural product of the design of our planet.

The design is a very good. Spreading water around the Earth in such a way that all latitudes and longitudes have enough water for humans to survive is a difficult challenge. When the Sun is directly overhead at the Equator, it generates heat energy on the surface of the Earth at that locale. The heated air rises and cools. Moisture condenses, and precipitation occurs.

The now dry air moves north and south away from the tropical rain forests. Eventually, it falls back to the Earth at about 30 degrees latitude north and south of the equator. That means there will be a desert at 30 degrees latitude. If you look at a globe, you will see that most of Earth’s deserts are at 30 degrees latitude. This effect is called “The Hadley Cell” and is well understood.

In the United States, 30 degrees north runs through Houston, the gulf coast, and northern Florida. Those areas would be deserts except for hurricanes and God’s design. Low-pressure cells generate over the South Atlantic and move toward the Gulf of Mexico. If these cells pick up enough water due to extra heat, a hurricane can result. Hurricanes bring large amounts of water to what would otherwise be parched, dry areas. When these areas go a long time with no significant water-bearing storms, drought is the result.

When I was a child in the middle of the twentieth century, hurricanes were a time for celebration. Hurricane parties were the rage, and people knew how to “batten down” for the “big blow.” The barrier islands were covered with mangroves which would break up the storm surge. Recharging the aquifers in the area was a good thing for everyone.

Since those days, people have cut down the mangroves and built resorts and beach houses on those barrier islands. Without the mangroves, the storm surges are massive. People have built huge housing developments on land poorly protected from the sea. Even farther inland, massive numbers of people have been put in harm’s way by the changes.

Hurricanes are not an evil, vindictive act of God. In this very incomplete and sketchy review of the cause of storm damage along the coast, we want to say that these storms have a positive effect. They are part of a system designed to make an area that otherwise would be a desert into a good place to live.

Like all the things God has given us, in the use of our land we need to apply wisdom. We have not had a good track record on stewardship of God’s gifts. We should think carefully about the future and use our knowledge and our ability to design and engineer things in a way that will minimize future catastrophes. Meanwhile, we need to join hands, clean up the mess, and help those in need.
–John N. Clayton © 2017

Why Is There Color in Our World?

Why Is there Color in the World?
One of the joys of life is the beauty that we see in the natural world. The beauty of flowers is so great that we decorate our homes inside and out with flowers of every description. People will get out of bed early in the morning to watch a sunrise display colors of incredible beauty and complexity. We admire the work of artists and photographers who can capture a permanent record of the colors of the world on canvas or film. Why is there color in the world?

There are hundreds of papers that have been written by scientists and science writers concerning the reason for color. The design of the Earth and of the life systems on Earth frequently demand that certain colors exist. For example, the green in vegetation is necessary to protect plants from the high energy wavelengths of the Sun’s light.

There are some colors in the natural world, however, that seem to defy a naturalistic evolutionary explanation. Flowers living in identical environments will frequently have radically different colors. If we postulate that the colors are different to attract different pollinators, we run into logical problems. Wouldn’t the most efficient pollinators provide the same advantages to all flowers of similar geometric design? In caves deep in the ocean, there are some of the more vividly colored tropical fish. These fish never see sunlight and have no camouflage advantage given by their colors. There are worms and burrowing animals in thermal vents deep in the floor of the ocean that display rich and beautiful colors.

A skeptic may reply that these colors are a chance consequence of the materials that make up the bodies of these organisms. The fact is that, in many cases, the colored materials in the organism are inconsequential to the survival of the organism. We would suggest an equally plausible and perhaps more realistic explanation. Could it be that a God of intelligence and creative power designed the creation not only with functional wisdom but also with aesthetic intelligence?

Why is there color? God obviously enjoys beauty. We were created in God’s image, and therefore we enjoy the beauty of the world around us. Beauty is one of the things that makes our sojourn on this planet worthwhile.
–John N. Clayton © 2017